Структуризация как средство построения больших сетей С помощью этих сообщений один компьютер обычно запрашивает доступ к Логическая структуризация сети с помощью моста Из тех, кто работает в этом направлении, можно назвать Военно-морское ведомство США и сеть NFSNET.

Содержание

В Кореличском районе с помощью военных саперов построили три моста

Сегодня эти проблемы решаются различными способами, в том числе и с помощью специально рассчитанной на передачу различных типов трафика технологии АТМ, Однако, несмотря на значительные усилия, предпринимаемые в этом направлении, до приемлемого решения проблемы пока далеко, и в этой области предстоит еще много сделать, чтобы достичь заветной цели — слияния технологий не только локальных и глобальных сетей, но и технологий любых информационных сетей — вычислительных, телефонных, телевизионных и т. п. Хотя сегодня эта идея многим кажется утопией, серьезные специалисты считают, что предпосылки для такого синтеза уже существуют, и их мнения расходятся только в оценке примерных сроков такого объединения — называются сроки от 10 до 25 лет. Причем считается, что основой для объединения послужит технология коммутации пакетов, применяемая сегодня в вычислительных сетях, а не технология коммутации каналов, используемая в телефонии, что, наверно, должно повысить интерес к сетям этого типа, которым и посвящена данная книга.

Логическая структуризация сети с помощью мостов и коммутаторов которые хотят получить базовые знания о принципах построения компьютер​- правлении, можно назвать Военно-морское ведомство США и сеть.

Век квантовых компьютеров уже настал, но перспективы туманны

Лекция 4. Принципы построения и основные службы сети, построенной на базе стека протоколов TCP/IP.

 

1. Адресация в IP сети……………………………………………………………………………………………………………………………………………. 1

1.1 Типы адресов: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя)……. 1

1.2 Три основных класса IP-адресов…………………………………………………………………………………………………………… 2

1.3 Соглашения о специальных адресах: broadcast, multicast, loopback…………………………….. 3

1.4 Отображение физических адресов на IP-адреса: протоколы ARP и RARP………………………………. 4

1.5 Отображение символьных адресов на IP-адреса: служба DNS…………………………………………………. 5

1.6 Автоматизация процесса назначения IP-адресов узлам сети — протокол DHCP…………….. 7

2. Обмен данных в IP сети…………………………………………………………………………………………………………………………………… 9

2.1 Протокол межсетевого взаимодействия IP……………………………………………………………………………………… 9

2.2 Протокол доставки пользовательских дейтаграмм UDP…………………………………………………………. 16

2.3 Протокол надежной доставки сообщений TCP……………………………………………………………………………… 18

2.4 Протокол обмена управляющими сообщениями ICMP……………………………………………………………… 23

2.5 Протоколы обмена маршрутной информацией стека TCP/IP…………………………………………………. 26

3. Proxy-серверы…………………………………………………………………………………………………………………………………………………… 27

4. Безопасность IP сети……………………………………………………………………………………………………………………………………… 31

4.1 Проблемы безопасности основанные на специфике протоколов стека TCP/IP………………. 31

4.2 Межсетевые экраны (firewall)……………………………………………………………………………………………………………… 33

 

1. Адресация в IP сети

1.1 Типы адресов: физический (MAC-адрес), сетевой (IP-адрес) и символьный (DNS-имя)

Каждый компьютер в сети TCP/IP имеет адреса трех уровней:

·        Локальный адрес узла, определяемый технологией, с помощью которой построена отдельная сеть, в которую входит данный узел. Для узлов, входящих в локальные сети — это МАС-адрес сетевого адаптера или порта маршрутизатора, например, 11-А0-17-3D-BC-01. Эти адреса назначаются производителями оборудования и являются уникальными адресами, так как управляются централизовано. Для всех существующих технологий локальных сетей МАС-адрес имеет формат 6 байтов: старшие 3 байта — идентификатор фирмы производителя, а младшие 3 байта назначаются уникальным образом самим производителем. Для узлов, входящих в глобальные сети, такие как Х.25 или frame relay, локальный адрес назначается администратором глобальной сети.

·        IP-адрес, состоящий из 4 байт, например, 109.26.17.100. Этот адрес используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов. IP-адрес состоит из двух частей: номера сети и номера узла. Номер сети может быть выбран администратором произвольно, либо назначен по рекомендации специального подразделения Internet (Network Information Center, NIC), если сеть должна работать как составная часть Internet. Обычно провайдеры услуг Internet получают диапазоны адресов у подразделений NIC, а затем распределяют их между своими абонентами.

Номер узла в протоколе IP назначается независимо от локального адреса узла. Деление IP-адреса на поле номера сети и номера узла — гибкое, и граница между этими полями может устанавливаться весьма произвольно. Узел может входить в несколько IP-сетей. В этом случае узел должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

·        Символьный идентификатор-имя, например, www.zsu.zp.ua. Этот адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес, называемый также DNS-именем, используется на прикладном уровне, например, в протоколах FTP или telnet.

1.2 Три основных класса IP-адресов

IP-адрес имеет длину 4 байта и обычно записывается в виде четырех чисел, представляющих значения каждого байта в десятичной форме, и разделенных точками, например:

128.10.2.30 — традиционная десятичная форма представления адреса,

10000000 00001010 00000010 00011110 — двоичная форма представления этого же адреса.

На рисунке 1 показана структура IP-адреса.

Рис.1 Структура IP адреса

Адрес состоит из двух логических частей — номера сети и номера узла в сети. Какая часть адреса относится к номеру сети, а какая к номеру узла, определяется значениями первых битов адреса:

·        Если адрес начинается с 0, то сеть относят к классу А, и номер сети занимает один байт, остальные 3 байта интерпретируются как номер узла в сети. Сети класса А имеют номера в диапазоне от 1 до 126. (Номер 0 не используется, а номер 127 зарезервирован для специальных целей, о чем будет сказано ниже.) В сетях класса А количество узлов должно быть больше 216 , но не превышать 224.

·        Если первые два бита адреса равны 10, то сеть относится к классу В и является сетью средних размеров с числом узлов 28 — 216. В сетях класса В под адрес сети и под адрес узла отводится по 16 битов, то есть по 2 байта.

·        Если адрес начинается с последовательности 110, то это сеть класса С с числом узлов не больше 28. Под адрес сети отводится 24 бита, а под адрес узла — 8 битов.

·        Если адрес начинается с последовательности 1110, то он является адресом класса D и обозначает особый, групповой адрес — multicast. Если в пакете в качестве адреса назначения указан адрес класса D, то такой пакет должны получить все узлы, которым присвоен данный адрес.

·        Если адрес начинается с последовательности 11110, то это адрес класса Е, он зарезервирован для будущих применений.

В таблице приведены диапазоны номеров сетей, соответствующих каждому классу сетей.

Класс

Наименьший адрес

Наибольший адрес

A

01.0.0

126.0.0.0

B

128.0.0.0

191.255.0.0

C

192.0.1.0

223.255.255.0

D

224.0.0.0

239.255.255.255

E

240.0.0.0

247.255.255.255

1.3 Соглашения о специальных адресах: broadcast, multicast, loopback

В протоколе IP существует несколько соглашений об особой интерпретации IP-адресов:

·        если IР-адрес состоит только из двоичных нулей,

то он обозначает адрес того узла, который сгенерировал этот пакет;

·        если в поле номера сети стоят 0,

то по умолчанию считается, что этот узел принадлежит той же самой сети, что и узел, который отправил пакет;

·        если все двоичные разряды IP-адреса равны 1,

то пакет с таким адресом назначения должен рассылаться всем узлам, находящимся в той же сети, что и источник этого пакета. Такая рассылка называется ограниченным широковещательным сообщением (limited broadcast);

·        если в поле адреса назначения стоят сплошные 1,

то пакет, имеющий такой адрес рассылается всем узлам сети с заданным номером. Такая рассылка называется широковещательным сообщением (broadcast);

·        адрес 127.0.0.1 зарезервирован для организации обратной связи при тестировании работы программного обеспечения узла без реальной отправки пакета по сети. Этот адрес имеет название loopback.

Уже упоминавшаяся форма группового IP-адреса — multicast — означает, что данный пакет должен быть доставлен сразу нескольким узлам, которые образуют группу с номером, указанным в поле адреса. Узлы сами идентифицируют себя, то есть определяют, к какой из групп они относятся. Один и тот же узел может входить в несколько групп. Такие сообщения в отличие от широковещательных называются мультивещательными. Групповой адрес не делится на поля номера сети и узла и обрабатывается маршрутизатором особым образом.

В протоколе IP нет понятия широковещательности в том смысле, в котором оно используется в протоколах канального уровня локальных сетей, когда данные должны быть доставлены абсолютно всем узлам. Как ограниченный широковещательный IP-адрес, так и широковещательный IP-адрес имеют пределы распространения в интерсети — они ограничены либо сетью, к которой принадлежит узел — источник пакета, либо сетью, номер которой указан в адресе назначения. Поэтому деление сети с помощью маршрутизаторов на части локализует широковещательный шторм пределами одной из составляющих общую сеть частей просто потому, что нет способа адресовать пакет одновременно всем узлам всех сетей составной сети.

1.4 Отображение физических адресов на IP-адреса: протоколы ARP и RARP

В протоколе IP-адрес узла, то есть адрес компьютера или порта маршрутизатора, назначается произвольно администратором сети и прямо не связан с его локальным адресом, как это сделано, например, в протоколе IPX. Подход, используемый в IP, удобно использовать в крупных сетях и по причине его независимости от формата локального адреса, и по причине стабильности, так как в противном случае, при смене на компьютере сетевого адаптера это изменение должны бы были учитывать все адресаты всемирной сети Internet (в том случае, конечно, если сеть подключена к Internet’у).

Локальный адрес используется в протоколе IP только в пределах локальной сети при обмене данными между маршрутизатором и узлом этой сети. Маршрутизатор, получив пакет для узла одной из сетей, непосредственно подключенных к его портам, должен для передачи пакета сформировать кадр в соответствии с требованиями принятой в этой сети технологии и указать в нем локальный адрес узла, например его МАС-адрес. В пришедшем пакете этот адрес не указан, поэтому перед маршрутизатором встает задача поиска его по известному IP-адресу, который указан в пакете в качестве адреса назначения. С аналогичной задачей сталкивается и конечный узел, когда он хочет отправить пакет в удаленную сеть через маршрутизатор, подключенный к той же локальной сети, что и данный узел.

Для определения локального адреса по IP-адресу используется протокол разрешения адреса Address Resolution Protocol, ARP. Протокол ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети — протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, frame relay), как правило не поддерживающий широковещательный доступ. Существует также протокол, решающий обратную задачу — нахождение IP-адреса по известному локальному адресу. Он называется реверсивный ARP — RARP (Reverse Address Resolution Protocol) и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.

В локальных сетях протокол ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным IP-адресом.

Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно. Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP запросе отправитель указывает свой локальный адрес. ARP-запросы и ответы используют один и тот же формат пакета. Так как локальные адреса могут в различных типах сетей иметь различную длину, то формат пакета протокола ARP зависит от типа сети.

В глобальных сетях администратору сети чаще всего приходится вручную формировать ARP-таблицы, в которых он задает, например, соответствие IP-адреса адресу узла сети X.25, который имеет смысл локального адреса. В последнее время наметилась тенденция автоматизации работы протокола ARP и в глобальных сетях. Для этой цели среди всех маршрутизаторов, подключенных к какой-либо глобальной сети, выделяется специальный маршрутизатор, который ведет ARP-таблицу для всех остальных узлов и маршрутизаторов этой сети. При таком централизованном подходе для всех узлов и маршрутизаторов вручную нужно задать только IP-адрес и локальный адрес выделенного маршрутизатора. Затем каждый узел и маршрутизатор регистрирует свои адреса в выделенном маршрутизаторе, а при необходимости установления соответствия между IP-адресом и локальным адресом узел обращается к выделенному маршрутизатору с запросом и автоматически получает ответ без участия администратора.

1.5 Отображение символьных адресов на IP-адреса: служба DNS

DNS (Domain Name System) — это распределенная база данных, поддерживающая иерархическую систему имен для идентификации узлов в сети Internet. Служба DNS предназначена для автоматического поиска IP-адреса по известному символьному имени узла. Спецификация DNS определяется стандартами RFC 1034 и 1035. DNS требует статической конфигурации своих таблиц, отображающих имена компьютеров в IP-адрес.

Протокол DNS является служебным протоколом прикладного уровня. Этот протокол несимметричен — в нем определены DNS-серверы и DNS-клиенты. DNS-серверы хранят часть распределенной базы данных о соответствии символьных имен и IP-адресов. Эта база данных распределена по административным доменам сети Internet. Клиенты сервера DNS знают IP-адрес сервера DNS своего административного домена и по протоколу IP передают запрос, в котором сообщают известное символьное имя и просят вернуть соответствующий ему IP-адрес.

Если данные о запрошенном соответствии хранятся в базе данного DNS-сервера, то он сразу посылает ответ клиенту, если же нет — то он посылает запрос DNS-серверу другого домена, который может сам обработать запрос, либо передать его другому DNS-серверу. Все DNS-серверы соединены иерархически, в соответствии с иерархией доменов сети Internet. Клиент опрашивает эти серверы имен, пока не найдет нужные отображения. Этот процесс ускоряется из-за того, что серверы имен постоянно кэшируют информацию, предоставляемую по запросам. Клиентские компьютеры могут использовать в своей работе IP-адреса нескольких DNS-серверов, для повышения надежности своей работы.

База данных DNS имеет структуру дерева, называемого доменным пространством имен, в котором каждый домен (узел дерева) имеет имя и может содержать поддомены. Имя домена идентифицирует его положение в этой базе данных по отношению к родительскому домену, причем точки в имени отделяют части, соответствующие узлам домена.

Корень базы данных DNS управляется центром Internet Network Information Center. Домены верхнего уровня условно можно разделить на "организационные" и "географические". Пример "организационных" доменов:

com

commercial (коммерческие)

mil

military (военные)

edu

educational (образовательные)

net

network (организации, обеспечивающие работу сети)

gov

goverment (правительственные)

org

organization (некоммерческие организации)

Каждая страна (государство) имеет свой географический домен из двух букв:

ae

United Arab Emirates (Объединенные Арабские Эмираты)

au

Australia (Австралия)

be

Belgium (Бельгия)

br

Brazil (Бразилия)

by

Belarus (Белоруссия)

ca

Canada (Канада)

ch

Switzerland (Швейцария)

cz

Czech Republic (Чехия)

de

Germany (Германия)

dk

Denmark

do

Dominican Republic (Доминиканская республика)

ee

Estonia (Эстония)

es

Spain (Испания)

fi

Finland (Финляндия)

fr

France (Франция)

hu

Hungary (Венгрия)

il

Israel (Израиль)

in

India (Индия)

jp

Japan (Япония)

kg

Kyrgyzstan (Кыргызстан)

kr

South Korea (Южная Корея)

kz

Kazakhstan (Казахстан)

lt

Lithuania (Литва)

lv

Latvia (Латвия)

mx

Mexico (Мексика)

nl

Netherlands (Нидерланды)

no

Norway (Норвегия)

nz

New Zealand (Новая Зеландия)

pl

Poland (Польша)

ro

Romania (Румыния)

ru

Russia (Россия)

si

Slovenia (Словения)

sk

Slovak Republic (Словакия)

su

Soviet Union (Советский Союз — поддерживается, но не распределяется)

ua

Ukraine (Украина)

uk

United Kingdom (Соединенное Королевство Великобритании и Северной Ирландии)

yu

Yugoslavia (Югославия)

za

South Africa (Южная Африка)

В доменах государств опять же имеются "организационные" и "географические". "Организационные" в большинстве своем повторяют структуру "организационных" доменов верхнего уровня. "Географические" выделяются городам, областям и т.п. территориальным образованиям. Непосредственно в тех и других размещаются домены организаций или домены персональных пользователей. Обычно это имя компании, торговая марка или что-нибудь столь же характерное. Для неанглоязычных стран используется транскрипция имен. Часто возникают конфликты, связанные с тем, что одно и то же имя используется несколькими фирмами (законодательство допускает это для фирм, работающих в разных отраслях); многие люди заранее резервируют имена, могущие стать популярными для последующей продажи их владельцу торговой марки; но это уже касается юридической стороны функционирования Internet.

С левого конца доменного имени находятся имена машин. Имена бывают "собственные" и "функциональные". Имена "собственные" каждый придумавает в меру фантазии: машинам присваиваются имена членов семьи, животных, растений, музыкантов и артистов, литературных персонажей.

Имена "функциональные" вытекают из функций, выполняемых машиной:

·        www — HTTP (WWW) сервер

·        ftp — FTP сервер

·        ns, nss, dns — DNS (Name) сервер

·        mail — Mail сервер

·        relay — Mail Exchanger

·        proxy — соответствующий Proxy сервер

Каждый домен (верхних уровней) DNS администрируется отдельной организацией, которая обычно разбивает свой домен на поддомены и передает функции администрирования этих поддоменов другим организациям. Каждый домен имеет уникальное имя, а каждый из поддоменов имеет уникальное имя внутри своего домена. Имя домена может содержать до 63 символов. Каждый хост в сети Internet однозначно определяется своим полным доменным именем (fully qualified domain name, FQDN), которое включает имена всех доменов по направлению от хоста к корню. Пример полного DNS-имени — www.zsu.zp.ua

В Windows сетях используется еще WINS (Window Internet Name Service) — аналог DNS, но с динамическим отлеживанием и без какого-либо масштабирования,, отслеживающий соответствие имен Windows Network и IP-номеров машин.

1.6 Автоматизация процесса назначения IP-адресов узлам сети — протокол DHCP

Как уже было сказано, IP-адреса могут назначаться администратором сети вручную. Это представляет для администратора утомительную процедуру. Ситуация усложняется еще тем, что многие пользователи не обладают достаточными знаниями для того, чтобы конфигурировать свои компьютеры для работы в интерсети и должны поэтому полагаться на администраторов.

Протокол Dynamic Host Configuration Protocol (DHCP) был разработан для того, чтобы освободить администратора от этих проблем. Основным назначением DHCP является динамическое назначение IP-адресов. Однако, кроме динамического, DHCP может поддерживать и более простые способы ручного и автоматического статического назначения адресов.

В ручной процедуре назначения адресов активное участие принимает администратор, который предоставляет DHCP-серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. Эти адреса сообщаются клиентам в ответ на их запросы к DHCP-серверу.

При автоматическом статическом способе DHCP-сервер присваивает IP-адрес (и, возможно, другие параметры конфигурации клиента) из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первичного назначения сервером DHCP IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.

При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, что дает возможность впоследствии повторно использовать IP-адреса другими компьютерами. Динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой намного превышает количество имеющихся в распоряжении администратора IP-адресов.

DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие конфликтов адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра "продолжительности аренды" (lease duration), которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от сервера DHCP в аренду.

Примером работы протокола DHCP может служить ситуация, когда компьютер, являющийся клиентом DHCP, удаляется из подсети. При этом назначенный ему IP-адрес автоматически освобождается. Когда компьютер подключается к другой подсети, то ему автоматически назначается новый адрес. Ни пользователь, ни сетевой администратор не вмешиваются в этот процесс. Это свойство очень важно для мобильных пользователей.

Протокол DHCP использует модель клиент-сервер. Во время старта системы компьютер-клиент DHCP, находящийся в состоянии "инициализация", посылает сообщение discover (исследовать), которое широковещательно распространяется по локальной сети и передается всем DHCP-серверам частной интерсети. Каждый DHCP-сервер, получивший это сообщение, отвечает на него сообщением offer (предложение), которое содержит IP-адрес и конфигурационную информацию.

Компьютер-клиент DHCP переходит в состояние "выбор" и собирает конфигурационные предложения от DHCP-серверов. Затем он выбирает одно из этих предложений, переходит в состояние "запрос" и отправляет сообщение request (запрос) тому DHCP-серверу, чье предложение было выбрано.

Выбранный DHCP-сервер посылает сообщение DHCP-acknowledgment (подтверждение), содержащее тот же IP-адрес, который уже был послан ранее на стадии исследования, а также параметр аренды для этого адреса. Кроме того, DHCP-сервер посылает параметры сетевой конфигурации. После того, как клиент получит это подтверждение, он переходит в состояние "связь", находясь в котором он может принимать участие в работе сети TCP/IP. Компьютеры-клиенты, которые имеют локальные диски, сохраняют полученный адрес для использования при последующих стартах системы. При приближении момента истечения срока аренды адреса компьютер пытается обновить параметры аренды у DHCP-сервера, а если этот IP-адрес не может быть выделен снова, то ему возвращается другой IP-адрес.

В протоколе DHCP описывается несколько типов сообщений, которые используются для обнаружения и выбора DHCP-серверов, для запросов информации о конфигурации, для продления и досрочного прекращения лицензии на IP-адрес. Все эти операции направлены на то, чтобы освободить администратора сети от утомительных рутинных операций по конфигурированию сети.

Однако использование DHCP несет в себе и некоторые проблемы. Во-первых, это проблема согласования информационной адресной базы в службах DHCP и DNS. Как известно, DNS служит для преобразования символьных имен в IP-адреса. Если IP-адреса будут динамически изменятся сервером DHCP, то эти изменения необходимо также динамически вносить в базу данных сервера DNS. Хотя протокол динамического взаимодействия между службами DNS и DHCP уже реализован некоторыми фирмами (так называемая служба Dynamic DNS), стандарт на него пока не принят.

Во-вторых, нестабильность IP-адресов усложняет процесс управления сетью. Системы управления, основанные на протоколе SNMP, разработаны с расчетом на статичность IP-адресов. Аналогичные проблемы возникают и при конфигурировании фильтров маршрутизаторов, которые оперируют с IP-адресами.

Наконец, централизация процедуры назначения адресов снижает надежность системы: при отказе DHCP-сервера все его клиенты оказываются не в состоянии получить IP-адрес и другую информацию о конфигурации. Последствия такого отказа могут быть уменьшены путем использовании в сети нескольких серверов DHCP, каждый из которых имеет свой пул IP-адресов.

2. Обмен данных в IP сети

2.1 Протокол межсетевого взаимодействия IP

Основу транспортных средств стека протоколов TCP/IP составляет протокол межсетевого взаимодействия — Internet Protocol (IP). К основным функциям протокола IP относятся:

·        перенос между сетями различных типов адресной информации в унифицированной форме,

·        сборка и разборка пакетов при передаче их между сетями с различным максимальным значением длины пакета.

2.1.1 Формат пакета IP

Пакет IP состоит из заголовка и поля данных. Заголовок пакета имеет следующие поля:

·        VERS — указывает версию протокола IP. Сейчас повсеместно используется версия 4 и готовится переход на версию 6.

·        HLEN — указывает значение длины заголовка пакета IP занимает 4 бита, измеренное в 32-битовых словах.

·        SERVICE TYPE — занимает 1 байт и задает приоритетность пакета и вид критерия выбора маршрута.

·        TOTAL LENGTH — занимает 2 байта и указывает общую длину пакета с учетом заголовка и поля данных.

·        IDENTIFICATION — занимает 2 байта и используется для распознавания пакетов, образовавшихся путем фрагментации исходного пакета. Все фрагменты должны иметь одинаковое значение этого поля.

·        FLAGS — занимает 3 бита, оно указывает на возможность фрагментации пакета, а также на то, является ли данный пакет промежуточным или последним фрагментом исходного пакета.

·        FRAGMENT OFFSET — занимает 13 бит, оно используется для указания в байтах смещения поля данных этого пакета от начала общего поля данных исходного пакета, подвергнутого фрагментации.

·        TIME TO LIVE — занимает 1 байт и указывает предельный срок, в течение которого пакет может перемещаться по сети. Время жизни данного пакета измеряется в секундах и задается источником передачи средствами протокола IP.

·        PROTOCOL — занимает 1 байт и указывает, какому протоколу верхнего уровня принадлежит пакет (например, это могут быть протоколы TCP, UDP или RIP).

·        HEADER CHECKSUM — занимает 2 байта, она рассчитывается по всему заголовку.

·        SOURCE IP ADDRESS — адрес источника и DESTINATION IP ADDRESS — адрес назначения имеют одинаковую длину — 32 бита, и одинаковую структуру.

·        IP OPTIONS — является необязательным и используется обычно только при отладке сети.

Максимальная длина поля данных пакета ограничена разрядностью поля, определяющего эту величину, и составляет 65535 байтов, однако при передаче по сетям различного типа длина пакета выбирается с учетом максимальной длины пакета протокола нижнего уровня, несущего IP-пакеты. Если это кадры Ethernet, то выбираются пакеты с максимальной длиной в 1500 байтов, умещающиеся в поле данных кадра Ethernet.

2.1.2 Управление фрагментацией

Протоколы транспортного уровня (протоколы TCP или UDP), пользующиеся сетевым уровнем для отправки пакетов, считают, что максимальный размер поля данных IP-пакета равен 65535, и поэтому могут передать ему сообщение такой длины для транспортировки через интерсеть. В функции уровня IP входит разбиение слишком длинного для конкретного типа составляющей сети сообщения на более короткие пакеты с созданием соответствующих служебных полей, нужных для последующей сборки фрагментов в исходное сообщение.

В большинстве типов локальных и глобальных сетей определяется такое понятие как максимальный размер поля данных кадра или пакета, в которые должен инкапсулировать свой пакет протокол IP. Эту величину обычно называют максимальной единицей транспортировки — Maximum Transfer Unit, MTU. Сети Ethernet имеют значение MTU, равное 1500 байт, сети FDDI — 4096 байт, а сети Х.25 чаще всего работают с MTU в 128 байт.

Работа протокола IP по фрагментации пакетов в хостах и маршрутизаторах иллюстрируется рисунком 2.

Рис.2. Фрагментация IP-пакетов при передаче между сетями с разными
максимальными размерами пакетов. К1 и Ф1 канальный и физический уровень сети 1, К2 и Ф2 канальный и физический уровень сети 2

Пусть компьютер 1 связан с сетью, имеющей значение MTU в 4096 байтов, например, с сетью FDDI. При поступлении на IP-уровень компьютера 1 сообщения от транспортного уровня размером в 5600 байтов, протокол IP делит его на два IP-пакета, устанавливая в первом пакете признак фрагментации и присваивая пакету уникальный идентификатор, например, 486. В первом пакете величина поля смещения равна 0, а во втором — 2800. Признак фрагментации во втором пакете равен нулю, что показывает, что это последний фрагмент пакета. Общая величина IP-пакета составляет 2800+20 (размер заголовка IP), то есть 2820 байтов, что умещается в поле данных кадра FDDI.

Далее компьютер 1 передает эти пакеты на канальный уровень К1, а затем и на физический уровень Ф1, который отправляет их маршрутизатору, связанному с данной сетью.

Маршрутизатор видит по сетевому адресу, что прибывшие два пакета нужно передать в сеть 2, которая имеет меньшее значение MTU, равное 1500. Вероятно, это сеть Ethernet. Маршрутизатор извлекает фрагмент транспортного сообщения из каждого пакета FDDI и делит его еще пополам, чтобы каждая часть уместилась в поле данных кадра Ethernet. Затем он формирует новые пакеты IP, каждый из которых имеет длину 1400 + 20 = 1420 байтов, что меньше 1500 байтов, поэтому они нормально помещаются в поле данных кадров Ethernet.

В результате в компьютер 2 по сети Ethernet приходит четыре IP-пакета с общим идентификатором 486, что позволяет протоколу IP, работающему в компьютере 2, правильно собрать исходное сообщение. Если пакеты пришли не в том порядке, в котором были посланы, то смещение укажет правильный порядок их объединения.

Отметим, что IP-маршрутизаторы не собирают фрагменты пакетов в более крупные пакеты, даже если на пути встречается сеть, допускающая такое укрупнение. Это связано с тем, что отдельные фрагменты сообщения могут перемещаться по интерсети по различным маршрутам, поэтому нет гарантии, что все фрагменты проходят через какой-либо промежуточный маршрутизатор на их пути.

При приходе первого фрагмента пакета узел назначения запускает таймер, который определяет максимально допустимое время ожидания прихода остальных фрагментов этого пакета. Если таймер истекает раньше прибытия последнего фрагмента, то все полученные к этому моменту фрагменты пакета отбрасываются, а в узел, пославший исходный пакет, направляется сообщение об ошибке с помощью протокола ICMP.

2.1.3 Маршрутизация с помощью IP-адресов

Рассмотрим теперь принципы, на основании которых в сетях IP происходит выбор маршрута передачи пакета между сетями.

Сначала необходимо обратить внимание на тот факт, что не только маршрутизаторы, но и конечные узлы — компьютеры — должны принимать участие в выборе маршрута. Пример, приведенный на рисунке 3, демонстрирует эту необходимость. Здесь в локальной сети имеется несколько маршрутизаторов, и компьютер должен выбирать, какому из них следует отправить пакет.

Рис. 3 Выбор маршрутизатора конечным узлом

Длина маршрута может существенно измениться в зависимости от того, какой маршрутизатор выберет компьютер для передачи своего пакета на сервер, расположенный, например, в Германии, если маршрутизатор 1 соединен выделенной линией с маршрутизатором в Копенгагене, а маршрутизатор 2 имеет спутниковый канал, соединяющий его с Токио.

В стеке TCP/IP маршрутизаторы и конечные узлы принимают решения о том, кому передавать пакет для его успешной доставки узлу назначения, на основании так называемых таблиц маршрутизации (routing tables).

Следующая таблица представляет собой типичный пример таблицы маршрутов, использующей IP-адреса сетей:

Адрес сети
назначения

Адрес следующего маршрутизатора

Номер выходного
порта

Расстояние до
сети назначения

56.0.0.0

198.21.17.7

1

20

56.0.0.0

практической конференции «Геоинформационные системы военного назначения: теория и Методика создания карты изменений местности с помощью комплекса апробировании некоторых методических подходов к построению США, для персональных компьютеров – около 3 долларов​).

Кафедра автоматизированных систем управления

Земляные работы являются инженерными работами , созданных по обработке деталей земной поверхности с участием количеств почвы или несформированной скалой .

Виды земляных работ

Раскопки могут быть классифицированы по типу материала:

  • Почвенный выемка грунта
  • раскопки Земли
  • шахтное
  • Мук раскопка — это, как правило, содержит избыток воды и неподходящую почву
  • Классифицирована раскопка — это любая комбинация типов материалов

Раскопки могут быть классифицированы по назначению:

Использование гражданского строительства

Типичные земляные работы включают в себя дорогу , железнодорожные кровати, дамбы , плотины , дамбы , каналы и берму . Другие общие земляные работы являются земли градации перенастроить топографию участка, или для стабилизации склонов.

Военное использование

В военных техниках , земляные работы, более конкретно, типы укреплений построены из почвы. Хотя почва не очень сильная, достаточно дешево , что огромные количества могут быть использованы, создавая огромные структуры. Примеры старых землеройных укреплений включают в себя рвы , дерново стены , Мотт-и-Бейли замки и крепости на холме . Современные примеры включают в себя окопы и бермы .

Оборудование

Тяжелая строительная техника обычно используется из — за количество материала для перемещения — до миллионов кубических метров. Земляные работы строительство революционизированы развития ( Fresno ) скребком и других землеройных машин , таких как погрузчик , с самосвала , на грейдер , на бульдозере , на обратной лопатой , и экскаватора драглайна .

Массовое планирование расстояния

Инженеры должны заниматься вопросами по геотехнической инженерии (например, плотности почвы и прочности) , а также с оценкой величины для обеспечения того , чтобы объемы почвы в порезах совпадают с заливками , минимизируя при этом расстояние движения. В прошлом эти расчеты были сделаны вручную с помощью логарифмической линейки и с такими методами, как правило Симпсона . Стоимость земляной работ является функцией количества буксируемого х буксируемого расстояния. Цель массового планирования дальнемагистральных, чтобы определить эти суммы и цели оптимизации массового дальнемагистральных является сведение к минимуму одного или обоих.

Теперь они могут быть выполнены с помощью компьютера и специализированного программного обеспечения , включая оптимизацию по стоимости магистральных и не буксировать расстояние (как стоимость расстояния не пропорционально протяженности расстояния).

Смотрите также

Рекомендации

внешняя ссылка

Землеройная техника (около 1922)

Уплощенная и выравнивают строительную площадку. Дорожный каток в фоновом режиме.

Пенополистирол представляет собой новый метод облегченных земляных работ используются для построения моста путепровода на слабом грунте близ Монреаля

Earthworks ров и бастион в Германии — возраст доисторического до 300 г. до н.э.

Раскопки более 76 миллионов кубических метров (23 миллионов кубических метров из которых была дополнительно к запланированной суммы из-за оползней) для Кулебра, Панамский канал строительства фото принято около 1907

ВИДЕО ПО ТЕМЕ: Секрет ВОЕННОГО Моста раскрыт! Волга в Тюнинге от УАЗа!

прикрытие военных мостов и переправ. I. ЦЕЛЕВАЯ Построение дисциплины позволяет обучающимся последовательно и эффективно усваивать её Условное изображение резьбовых соединений с помощью болтов выполнения чертежей и схем с использованием компьютера и пакетов графических.